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Abstract. In this paper the Purchasing Scheduling Problem (PSP) with limited 

funds is presented. PSP is formulated through the optimization of two objectives 

based on the inventory-supply process: maximization of satisfied demands and 

minimization of purchasing costs. The problem is solved using two variants of 

the Ant Colony System algorithm (ACS), designed under Pareto's optimization 

principle in which elements of multi-objective representation for computing a 

feasible solution are incorporated to the basic design of ACS. Experimental 

results reveal that the Pareto approach improves solutions over the ACS in 8%, 

obtaining an efficiency of 80% solving the set of PSP instances as purchasing 

plans. This reveals the advantages of developing evolutionary algorithms based 

on multi-objective approaches, which can be exploited in planning and 

scheduling systems. 

Keywords: Purchasing scheduling problem, multi objective optimization, ant 

colony system algorithm 

1 Introduction 

The purchase of goods is an essential activity for companies and business. It is the 

process that involves supply based on searches of items in physical facilities, 

information of products to check inventory stocks, objects or items in big catalogs and 

supply of goods on supplier locations. All these activities are periodically executed 

based on customer demands and the inventory control, associated with the availability 
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of economic resources and the storage space in warehouses. In this manner, the 

Purchasing Scheduling Problem (PSP) (introduced in [1]), establishes a mathematical 

approach to compute purchasing schedules when demands are variable. Industrial 

application of PSP is defined as a graph-based problem with several objectives, for 

example maximization of demand satisfaction, minimization of purchasing costs, 

maximization of inventory supplies and minimization of supply times.  

In addition, multi-objective formulation of PSP faces additional constrains such as 

penalties to influence a schedule with a subset of desired elements, which implies a 

quality factors in purchasing related with customer preferences [2, 3], critical supply 

times [4], negotiations in economical lots of orders [5], categorization of products to be 

purchased [6], and availability of physical space at warehouse facilities [7] when stock 

must be supplied. For this reason, selection of appropriated goods to be supplied for 

inventory has become a complex and multi-objective task, whose approach determines 

the efficiency of a purchasing plan. It is desirable to optimize economical resources in 

the companies able to produce, distribute and sell their products according to the supply 

chain. 

2 The Purchasing Scheduling Problem 

The Purchasing Scheduling Problem (PSP) is defined through a catalog of products like 

a weighted graph G = (V, E), where 𝑉 = {𝑃 ∪ 𝑆} consists of a set of n products (P) per 

m suppliers (S). The set E is formed by pairs (p,s), 𝑝 ∈ 𝑃 and 𝑠 ∈ 𝑆. Each pair has a 

cost cps to purchase a product p from any s supplier. Purchasing process is organized 

through orders PPk   (or demands), where k represents a decision maker (a purchaser) 

with a number nk of products to be satisfied with an available fund ak. In these concepts, 

PSP optimizes two objectives: maximization the amount of satisfied products (for each 

order Pk) and minimization of purchasing costs (cps) in an inventory cycle. These 

objectives introduce the field of multi-objective computation.  

3 Multiobjective Optimization 

Muitivariant and multiobjective nature of real problems present a challenge to 

development of efficient algorithms. As a consequence, computation of optimal 

solutions in a multi-objective problem (MOP) is computationally intractable [8] when 

large-scale instances are solved. As a consequence, optimal solution of MOP is not 

possible to compute because MOP is represented by a set of objectives in conflict. This 

is why computation of solutions in a MOP consists of establish the set Pareto front  

PS = {s1 , s2 ,.., sm} with sm solution vectors of the problem, where feasibility of 

solutions is given in terms of dominance and efficiency of Pareto. 

Dominance is defined according to the analysis of objectives in pairs. It establishes 

that objective PSs j   dominates a vector PSs j ' if and only if 

 pjss jj ,...,1,'  , with at least one index j for which the inequality is strict 
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(denoted by 'jj ss  ). Efficiency of Pareto defines a feasible solution sj, for which 

there does is no other solution 'js  such as  )'()( jj szsz  . It implies that sj is a non-

dominated solution (or Pareto optimal).  PSP implies the solution of two objectives 

based on warehouse operations, in which these represent opposite decisions. It defines 

a multi-objective scene of PSP in terms of a graph-based problem, needed to compute 

efficient solutions for the related MOP in PSP. 

4 PSP Formulation 

PSP is formulated through the next data sets: 

The general inventory catalogue sets: 

    P: is the set of products in an inventory catalog with n products.   

    Pk: is the set of products to be purchased with nk products, PPk  , k=1,2,…,s     

    S: is the set of suppliers in the product catalog with m suppliers. 

The model uses the next variables: 

   k is the number of orders in each inventory cycle. k = 1,2,…, s 

   cij is the cost to purchase a product i from a supplier j. 

   ak represents the available funds for each order k. 

   xijk is an integer variable {0,1}. It has a one value if a product i is assigned to the 

supplier j in the order k, zero in otherwise.  

Objectives of PSP are defined with the f and g coefficients, a normalized objective 

values in the domain [0,1], where f represents a profit in terms of satisfied demands and 

g indicates a uniform reference with regard to the assigned cij values for each assigned 

product. These values are based on the utility principle proposed in [9;10;11], defined 

through expressions (1) and (2).           
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Solution of a multiobjective problem is defined in [12] as a single-objective based 

on a utility value, following a decomposition strategy. For this reason, objective g is 

inverted and solved as a maximization objective. As a result, PSP is defined in the 

general model of expressions (3)-(5): 

 gfz  maximize ,           (3) 

Subject to: 
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  ,...,s,,...,m; k,,...,n, j, i   , xijk 212121      10          (5) 

The z value of equation (3) has a one-value when all products have been assigned (f 

is optimal and the dominant objective); in the other hand, a zero-value indicates that g 

is the dominant objective. Expressions (4)–(5) establishes constrains of available funds 

in the integer model.  

5 The Ant Colony System Algorithm 

The Ant Colony System (ACS) algorithm [13] is a well-known method to solve graph-

based problems. Construction procedures of solutions in ACS are based on selection of 

arcs (i,j) of a graph. Ants travel around the roads, leaving an amount of pheromone ij  , 

used to determine the desirability of the roads ij . These parameters are used by 

artificial ants to generate desirable routes, such as the feedback process of natural ants 

that looks for the shortest paths between the anthill and the food sources. Evolutive 

process (iterative) of ACS permits evaporation of pheromone trails to converge towards 

the most feasible routes, which optimize objectives of the problem. General ACS 

procedure is presented in Fig. 1. 

 

 

1 Procedure ACS_Algorithm () 

2      Initialize_parameters ( ij , ij ) 

3       While(isReached(stopCriteria)) do 

4             constructionProcedure( ij , ij ) 

5             updateOfPheromoneTrailsProceduure( ij ) 

6       End_of_while 

7 End Procedure 

Fig. 1. The AntColonySystem Procedure 

 

The constructionProcedure in ACS_Algorithm builds routes with the desirable nodes 

in the problem using a transition rule. It defines a basic multi-objective ant colony 

system algorithm, defined in [1], and based on the multi-objective formulation of PSP. 

This algorithm creates solutions through of selection of arcs of i products that are 

purchased to the j suppliers, where selection of the next i-th product is randomly 

performed in each order Pk. When a product has been selected, the supplier j  is chosen 

using the parameter q0 of equation (6). 
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When q<q0, a deterministic selection is performed using the ij  and ij  , and the 

constructive parameters α and β of ant algorithms; otherwise a roulette is executed 

through the computation of the function f of expression (7). This function is used to 

explore the neighborhood Nk(i) of suppliers for the i-th product to be selected. This 

exploration is performed through the pij values. 
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When an ant chooses a feasible arc (i,j), local evaporation of pheromone is 

performed using the 0  values and the ]1,0[ parameter of expression (8). This 

process is executed while ants have feasible arcs to select in constructionProcedure. 

                                          00 1   ij
                            (8) 

Once those ants have completed their solutions in constructionProcedure, global 

updating of pheromone (the updateOfPheromoneTrailsProceduure) is performed 

according to equation (9).  

      (9) 

Where ij represents the amount of deposited pheromone, which is computed like 

a measure cumulative uniform of the selected products by an ant in an order Tk. 

Expressions (6)-(9) define the heuristics of the basic design for the ACS algorithm, 

commonly used in single-objective problems (such as the aggregation described in the 

PSP formulation). However, solution of PSP requires a diversification of the search in 

the solution space, needed to reach the best solutions according to the Pareto’s 

efficiency principle. Reason why, the knowledge based on Pareto’s approach is 

incorporated to the ACS design to solve the related multi-objective problem. 

6 The Pareto Optimization approach 

Pareto Optimization has been used in optimization to obtain a Pareto Optimal Set to 

solve multiobjective problems [14]. All solutions in the Pareto’s set are non-dominated 

solutions. In this way, Pareto Ant Optimization establishes the set of non-dominated 

solutions with a number of ant colonies that have the same number of ants. In its 

evolutive process, solutions of ants are compared and the pheromone updating process 

       ,  , 1 kkkijijij PTTi,j  
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is applied to the non-dominated solutions. Pareto Ant Optimization defines two variants 

over the basic design of ACS to solve multi-objective problems. It is based on multi-

objective heuristic rules that permit to guide the ants in the             constructionProcedure 

over different regions of the solution space. The first variant (P-ACO1) defines a 

modified   rule used in global updating of pheromone. It is computed through 

equation (10).  
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The   values of expression (10) introduce a profit/cost relationship between 

objectives using a  value, used according to [15] as a balancing parameter in selection 

of arcs. Where nk is the size of the problem. The ij  values in global updating process 

ensure a faster convergence for ant algorithms in based-graph problems. However, an 

appropiated   value can determine a better efficiency in solutions of a MOP.   

The second variant (P-ACO2) consists of introducing pheromone values per each 

objective 
k

ij . In addition of pheromone values, also heuristic values 
k

ij  are added 

according to the k–th objective. This strategy permits a further exploration for each 

single-objective in cases where arcs are selected in non-deterministic way. It is used to 

determine solutions in the Pareto’s front. Consequently, P-ACO2 algorithm defines the
f

ij ,
g

ij ,
f

ij  and 
g

ij
 
values, which represents the uniform profit/cost values for 

objectives in PSP. These parameters define the multi-objective selection rule of 

expression (11), which defines the third form to compute solutions in the 

constructionProcedure of ACS. 
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Where ]1,0[  represents the relative importance of the different objectives 

according to [16]. Selection of arcs (i,j) related to the heuristic rule of equation (11) 

implies that updating pheromone requires a multi-objective definition in design of the 

P-ACO2 variant. Therefore, 
k

ij  
values are introduced as a performance measure of 

the current solution with regard to the k objectives of the problem, used in global 

upgrading of pheromone. Once that all arcs (i,j) are selected in  constructionProcedure,  

the P-ACO2 variant performs an upgrading rule (incorporated in 

updateOfPheromoneTrailsProceduure) that uses the  values per each k objective (
f

ij  and 
g

ij ), defining a dual updating process according to expression (9). Where 

the   values are computed like the inverse of the maximum profit 
f

ij and minimum 
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cost 
g

ij  (best ant solutions) respectively. These variants in the multi-objective scene 

diversify the construction of solutions for PSP, providing to the ACS algorithm 

different exploration degrees to build feasible solutions for the orders (Tk) according to 

the formulation of PSP. 

7 Architecture of Solution 

The proposed approach follows the architecture of Fig. 2. In which the constructive 

process of purchasing schedules of PSP is described. Architecture consists of two 

modules: Preprocessing and Optimization. Preprocessing module is used to extract 

information of PSP sets of a database model (proposed in [17]). This action generates 

a PSP input instance which consists of a plain-text file, used to establish the solver 

independent to the database. It permits the use of the architecture in several purchasing 

scenarios, giving support to the staff of the purchasing personal.  

 

 

 

 

 

 

 

Fig. 2. Proposed solution methology. 

Optimization module receives a PSP input instance and executes the basic ACS 

defined in [1], and the two Pareto-based variants described in this work. In each 

execution, the best solution of a determined algorithm is presented like a purchasing 

schedule to decision makers. It represents an optimized solution with regard to the 

objectives and constrains of PSP, whose efficiency is then analyzed by the purchasers 

to establish the decision to buy. 

8 Experiments and Results 

Due to real instances of PSP were unavailable, a dataset of ten orders was built using a 

pseudo-random number generator. It uses the queries of web catalogs, stored in a model 

inventory database. The generator creates the orders with different prices and suppliers 

for products, maximum and minimum prices for products and available funds. 
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Parameters of generator are shown in Table 1. It supposes an inventory cycle with ten 

orders (purchasers), where some products have costs more expensive than available 

funds. 

Table 1. Input parameters for instances generated for PSP. 

Orders 

(k) 

Number of  

Products (nk) 

Min price Max price Available Funds 

1 126 14.00 10999.00 25000.00 

2 123 73.00 60000.00 50000.00 

3 63 29.00 120000.00 40000.00 

4 146 99.90 15980.00 65000.00 

5 70 3.00 60000.00 30000.00 

6 194 56.90 20000.00 80000.00 

7 128 75.00 18799.00 75000.00 

8 119 95.00 18000.00 55000.00 

9 108 3.00 88996.00 48000.00 

10 126 14.00 11499.00 40500.00 

 

Instances were solved in an Apple MacBook Pro device model A1286, four-core 

processor (2.4 Ghz per core), 8 GB of RAM memory, 750 GB hard disk under Mac OS 

X 10.9 Mavericks. ACS and its multiobjective variants (P-ACO1 and P-ACO2) were 

developed in Java Standard Edition 8 with Eclipse Luna. At each execution, an 

accumulated sum (∑) is stored with the number of times in which the values of best 

solutions are reached. It indicates the exploration degree of each algorithm.  

Table 2. Solutions of PSP with ACS and ACO variants based on Pareto approach. 

Algorithm         Iterations 1000 5000 10000 15000 20000 30000 

ACS 

f 0.8301 0.8513 0.8431 0.8212 0.8205 0.8452 

g 0.1150 0.1005 0.1030 0.1278 0.1288 0.1026 

∑ 22.31 24.17 23.32 26.47 25.22 25.53 

t  895.75 8753.96 15830.87 9840.30 18963.43 16732.78 

P-ACO1 

f 0.8643 0.8513 0.8216 0.8807 0.8895 0.8772 

g 0.0818 0.0963 0.1230 0.0795 0.0751 0.0894 

∑ 16.45 12.29 18.73 17.55 17.34 22.73 

t  667.71 5542.52 8754.93 5503.87 13927.54 29453.01 

P-ACO2 

f 0.8801 0.8582 0.8870 0.8925 0.8858 0.8993 

g 0.0849 0.0991 0.0802 0.0755 0.0763 0.0722 

∑ 28.72 23.55 30.05 32.92 28.64 30.63 

t  1350.64 6922.03 22532.98 25073.84 21569.23 27954.91 
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Additionally, average time computation is measured (t) in which best solutions of 

ACS are reached, and the f and g average values for each instance. Table 2 shows the 

performance for ACS and Pareto-ACO variants for six tests with 30 executions with: 

1000, 5000, 10000, 15000, 20000 and 30000 iterations for each algorithm. Parameter 

values established to test the algorithms were:  q0 = 0.5, ρ=0.1, θ = 0.5, λ = 0.2,α = 1 

and β = 2. In each execution, the best solution is storage to establish the average 

performance that is presented in Table 2.  

Results of Table 2 indicate that ACS reaches a 72% in average of z values, in an 

average time of 12 seconds. It presents a variation coefficient of 0.76 with a Pearson 

Correlation Coefficient of -0.98. P-ACO1 algorithm improves in average 5% the results 

of ACS, but according to the ∑ value, the search is more directed towards a faster 

convergence (∑ average value is less than ACS). It demonstrates that P-ACO1 variant 

over the ACS algorithm is able to improve the solutions of PSP. Even though P-ACO1 

reaches a variation coefficient of 0.81, the Pearson correlation is established in -0.94. 

It reveals a slow deviation P-ACO1 directing the search in the Pareto front with regard 

to ACS. However, results demonstrate P-ACO1 variant diversifies the search and 

reaches a faster convergence than ACS. 

In the other case, results of the P-ACO2 algorithm demonstrates that introducing 

pheromone values per each objective give to the ACS enough exploration degree to 

improve objective results of ACS by 8%, and 3% in average results of the ACS and P-

ACO1 variants, reaching the 80% in average in z values. Effects of this are shown in 

the ∑ column. This exploration average is supported by a variation coefficient of 0.83 

and a correlation coefficient of -0.98, which establishes a diversified and further search 

in the Pareto Front. Efficiency of P-ACO2 can be also observed in the average time of 

computation for the best solutions (17 seconds in average). Although it presents slower 

convergence, it is proved that P-ACO2 variant represents the best alternative when 

testing configurations for the ant algorithms, described in terms of Pareto efficiency 

solving PSP. 

9 Conclusions and Future Works 

In this paper, the Purchasing Scheduling Problem was approached with three variants 

of the Ant Colony System Algorithm. The first variant (ACS) represents an efficient 

strategy when the search in the problem looks for a single objective, providing good 

solutions. In the same manner, it was proved that hybridization of the ACS algorithm 

using the Pareto principles is helpful in discovering different regions of the solution 

space, giving better solutions with the test parameters.  

Consequently, an alternative to compute the Pareto optimal values can be 

approached using some neighborhood techniques, such as the classical 3-Opt and Cross 

Exchange operators over the P-ACO1 and P-ACO2 algorithms, well-known operators 

that usually improve results of the ACS algorithm. Additionally, results of P-ACO1 and 

P-ACO2 algorithms to determine the importance of the constructive parameters (θ and 

λ) in the proposed Pareto’s approach. 
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Efficiency of PSP solutions and speed of computation show the advantages of 

developing evolutionary algorithms to integrate them in complex decision-making 

systems. They can be used as planning tools to develop ERP systems (Enterprise 

Resource Planning), reliable information technology resources to implement in 

industrial and organizational environments. 
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